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An experimental and numerical study has been performed to improve the under-
standing of the air/liquid interaction in an air-blasted breaking water sheet. This
research is focused in the near field close to the exit slit, because it is in this region
where instabilities develop and grow, leading to the sheet breakup. In the experiments,
several relevant parameters were measured including the sheet oscillation frequency
and wavelength, as well as the droplet size distribution and the amplification growth
rate. The flow was also investigated using linear instability theory. In the context
of existing papers on instability analysis, the numerical part of this work presents
two unique features. First, the air boundary layer is taken into account, and the
effects of air and liquid viscosity are revealed. Second, the equations are solved for
the same parameter values as those in the experiments, enabling a direct comparison
between calculations and measurements; although qualitatively the behaviour of the
measured variables is properly described, quantitative agreement is not satisfactory.
Limitations of the instability analysis in describing this problem are discussed. From
all the collected data, it is confirmed that the oscillation frequency strongly depends
on the air speed due to the near-nozzle air/water interaction. The wave propagates
with accelerating interface velocity which in our study ranges between the velocity
of the water and twice that value, depending on the air velocity. For a fixed water
velocity, the oscillation frequency varies linearly with the air velocity. This behaviour
can only be explained if the air boundary layer is considered.

1. Introduction
Despite the importance of spray flows in many daily applications, the basic phys-

ical mechanisms that cause the atomization processes are still not completely un-
derstood. A common type of atomizer, used for example in aircraft turbines, is the
so-called ‘air-blast’, in which a high-speed air stream surrounds a liquid jet. Although
most air-blast commercial atomizers have an axisymmetric design, two-dimensional
geometries where the liquid is injected as a thin planar sheet are becoming increasingly
popular as a benchmark flow to study primary atomization because of its relative
experimental simplicity. The basic mechanisms leading to the liquid breakup are the
same in both axisymmetric and planar configurations, but planar designs are easier to
visualize. Large-aspect-ratio sheets are especially suitable for studying the transverse
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perturbations in regions near the nozzle exit, and edge effects in the injection region
are limited to a small fraction of the spanwise dimension.

Studies on the breakup of a liquid mass into droplets to generate a spray, initiated in
a systematic way in the past century, are very extensive. Restricting our consideration
to those that directly refer to the present geometry, the first reported work on the
disintegration of a liquid sheet known to the authors is a series of experiments by Felix
Savart in 1833. In this case, the sheet was formed by impinging a water jet onto a disk,
forming a water bell similar to those studied a century later by Taylor (1959a). Over
the last five decades, experimental studies, mostly based on visual observations, have
progressed together with theoretical stability analysis. Squire (1953), York, Stubbs
& Tek (1953), Taylor (1959b) and Hagerty & Shea (1955) initiated linear stability
analysis of thin liquid sheets in quiescent air, considering potential flows. Sinusoidal
(antisymmetric) and varicose (dilatational or symmetric) waves were predicted. Liquid-
film experimental disintegration studies in high-aspect-ratio two-dimensional designs
were initiated by Hagerty & Shea (1955) although in their experiments, water was
also exiting into non-flowing ambient air. In that report, initial perturbations were
introduced by oscillating the nozzle. The two types of waves predicted, sinusoidal and
varicose, were observed at the liquid interface.

Research on liquid sheets was continued, although in slightly different geometries,
with the work of Taylor (1959a) on water bells, and the numerous papers, both
experimental and theoretical, by Dombrowski and coworkers on short-aspect-ratio
nozzles that produced the so-called water fans (Dombrowski, Hasson & Ward 1960;
Fraser, Dombrowski & Routley 1963). Dombrowski & Johns (1963) assumed a
viscous liquid sheet in a quiescent inviscid gas. From a balance of the forces acting
upon a fluid element at the interface they concluded that liquid viscosity added a
dependence of the growth rate not only on wavenumber but also on sheet thickness.
Crapper, Dombrowski & Pyott (1975b) unsuccessfully tried to compare their inviscid
system results to experimental data. In all these investigations, boundary conditions
at the gas/liquid interfaces corresponded to those of a shear-free surface. With this
simplification, the tangential stress at the liquid was set equal to zero and continuity of
the perturbed velocity was not required. The gas dynamic effect was, thus, completely
ignored. To describe a more realistic configuration, Crapper, Dombrowski & Jepson
(1975a) considered viscosity in both fluids, a slightly parabolic velocity profile for
the basic liquid flow and an exponentially decaying profile for the air stream. When
solving the equations, the parabolic water profile was further approximated by a
straight line. The frequency instability range was widened due to viscosity and, for
high liquid velocities, no maxima for the growth rate curve as a function of the
wavenumber were predicted when surface tension was taken into account. It was also
found that the instabilities were insensitive to changes in liquid viscosity.

Experiments in large-aspect-ratio sheets were resumed years later, when Rizk &
Lefebvre (1980), Arai & Hashimoto (1985), Mansour & Chigier (1990, 1991) and
Stapper & Samuelsen (1990) sandwiched the liquid sheet between two high-speed
coflowing air streams to produce for the first time an air-blast atomization. Most
of these studies, based on visual observations, were phenomenological, with the
main interest in predicting the droplet cloud characteristics. Correlations were ob-
tained relating physical fluid properties, nozzle geometry and flow conditions with
mean droplet diameter, breakup length and oscillation frequency. It was concluded
that the oscillation frequency is linearly dependent on air velocity, and only weakly
dependent on the liquid one. For low gas/liquid velocity ratios a mixture of di-
latational and sinusoidal waves was observed, with small growth rates. It was also
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detected that on increasing the velocity ratio, the sinusoidal mode became dominant
and amplification was highly enhanced. A transition in breakup characteristics is
described, passing from what Stapper & Samuelsen denoted as a ‘cellular’ mode
to a ‘stretched streamwise ligament’ mode in which ligaments oriented parallel to
the flow direction are formed prior to disintegration. Effects of surface tension and
liquid viscosity were analysed in the measurements by Eroglu & Chigier (1991),
Stapper, Sowa & Samuelson (1992) and Shavit & Chigier (1995). The main con-
clusion was that these properties were affecting the characteristic length and time
scales associated with the breakup, and consequently were influential on the mean
droplet diameter. The breakup mechanisms are, however, largely independent of
them.

From a numerical point of view, Lin, Lian & Creighton (1990) found that a viscous
ambient gas dragged by the liquid motion tends to destabilize the sheet and to shorten
both sinuous and varicose mode wavelengths. Li & Tankin (1991) treated a viscous
liquid sheet in an inviscid gas and conducted a temporal growth study, obtaining
a viscosity-enhanced instability the same as that found by Crapper et al. (1975a).
Rangel & Sirignano (1991) performed linear and nonlinear stability analysis of a
liquid sheet in a moving gas, both considered to be inviscid. Ibrahim (1994) analysed
the spatial growth of a perturbation for the same system as that proposed by Li &
Tankin, obtaining different results. These studies were extended to a three-dimensional
configuration in Ibrahim & Akpan (1996).

Conditions where the liquid sheet exits into a quiescent atmosphere are intended
to describe those of pressure atomizers. When predictions obtained in studies de-
scribing this situation are directly applied to air-blasted geometries, comparisons with
experimental results fail dramatically, because the sheet oscillation has been proven
to be mainly controlled by the air flow dynamics (Barreras 1998). The problem in the
context of an air-blasted configuration has been treated, after Rangel & Sirignano
(1991), by Yang (1992), Ibrahim (1995) and Cousin & Dumouchel (1996), with the
air exit velocity higher than that of the liquid. None of these papers, however, has
included air viscosity in the perturbation equations.

The only papers where a viscous boundary-layer-type velocity profile has been
considered for the basic state of the gas stream describe simpler physical situations.
Teng, Lin & Chen (1997) numerically investigated two semi-infinite viscous fluids
with parabolic velocity profiles as the basic states and used Chebyshev polynomial
expansions to solve the Orr–Sommerfeld equation and boundary conditions. Absolute
instability did occur when the Weber number was approximately one, surface tension
effects being the cause. Interfacial shear plays a crucial role in other related problems,
such as wind-generated waves (Benjamin 1959; Miles 1962) and wind-sheared liquid
films in contact with solid walls (Smith & Davis 1982; Yih 1990; Miesen & Boërsma
1995; Criminale et al. 1997).

Recent experimental works have emphasized the analysis of the near-field region,
close to the exit slit, to explain the development and growth of the instabilities that
ultimately cause the liquid sheet breakup (Lozano et al. 1996; Vich, Dumouchel &
Ledoux 1996). In order to explain the fast amplification of initial perturbations it has
been suggested (Vich et al.) that some mechanism other than the Kelvin–Helmholtz
instability could be contributing to enhance their growth, for example, the ‘flag effect’
described by Birkhoff (1962).

This paper presents a combined experimental and numerical investigation of a
large-aspect-ratio air-blasted liquid sheet, aimed at improving the understanding of
the air/liquid interaction in the region near the nozzle exit. It is in this region where



146 A. Lozano, F. Barreras, G. Hauke and C. Dopazo

instabilities are triggered, develop and grow, leading to the sheet breakup. In the
experimental part of the study, different parameters have been examined, applying
a variety of techniques. In particular, measurements have been made of the sheet
oscillation frequency, droplet size distribution and growth rate, and estimations have
been obtained of the wavelength and wave propagation speed.

The flow has also been analysed using linear instability theory, reproducing the
conditions of the experiments. In this way, comparison and validation of the numerical
predictions becomes almost immediate. The present analysis is also novel in that,
unlike most of the previously published studies, the air boundary layer has been
taken into account, and the effects of air and liquid viscosity have been considered.
Air and liquid basic flows have been taken as viscous, as have their perturbations. In
doing so, the interface boundary conditions better reflect the real situation.

2. Description of the experiment
The characteristics of the experimental set up used in the present study are similar

to those described by Mansour & Chigier (1990) and Lozano et al. (1996), with one
of the main differences being both water and air nozzle profiles, which were carefully
designed so that the air velocity at the exit is parallel to the water flow. A schematic
of the atomizer assembly is depicted in figure 1 together with a photograph detailing
the nozzle head. Water injected at the top of the nozzle head exits vertically through
a 0.35 mm wide slit. The nozzle was contoured, fitting a sixth-order polynomial, to
ensure a uniform velocity profile and has a 23 : 1 contraction ratio. The span of the
sheet is 80 mm, yielding an aspect ratio of 230. The edge thickness of the nozzle
lips is 0.35 mm. Air is also introduced from the top following a settling chamber
with two honeycombs and a wire mesh screen to smooth the flow. The air channels
located at both sides of the liquid nozzle were also contoured according to sixth-
order polynomials, with contraction ratios of 15 : 1 and exit widths of 3.45 mm. This
geometry probably does not provide the most efficient atomization, as air impinging
at an angle with respect to the liquid sheet would probably produce a faster breakup.
Its simplicity, however, is an advantage in order to compare the measurements with
numerical simulations and identify basic breakup mechanisms. For the conditions
under study, water velocities ranged from 0.6 to 6 m s−1, while air velocities varied
between 15 and 75 m s−1.

The sheet oscillation frequency was measured using the laser diffraction technique
described in detail in Mansour & Chigier (1991). A beam generated by a 5 mW
diode laser propagates horizontally parallel to the liquid sheet, pointing directly to a
receiving photodiode. The beam is slightly displaced from the nozzle slit. As the sheet
oscillates, the liquid/water interface cuts the light beam, reflecting and refracting part
of it, and its passage is detected as a drop in the luminous signal registered by the
photodiode. The periodic signal from the photodiode output is digitized, and the
fundamental frequency is obtained from a Fourier transform. As shown in Mansour
& Chigier (1991) and in Lozano et al. (1996) for a wide range of combinations of
air and water velocities, the photodiode signal clearly presents a dominant oscillation
frequency, which is easily discernible in the transformed domain. As also explained
in the cited references, the signal is largely independent of the downstream position
of the photodiode, provided that it is not located inside the spray region.

Droplet size distributions were measured using a Malvern 2600 laser difractometer.
The measurements were obtained at 1 cm from the limit of the intact sheet distance,
to minimize effects of secondary breakup and droplet coalescence. To determine the
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Figure 1. View of the atomizer assembly and the nozzle head.

average diameter, 1000 samples were collected for each flow configuration, charac-
terized by the air and water velocity values. From the size distributions, the Sauter
mean diameter (SMD or D32) was obtained, according to the following expression:

SMD =

∫ ∞
0

D3F(D) dD∫ ∞
0

D2F(D) dD

, (2.1)

where D is the droplet diameter and F(D) is the size distribution function (see, for
example, Lefebvre 1989).

To study the wavelength and growth rate of the longitudinal perturbation, planar
laser-induced fluorescence (PLIF) images were obtained, seeding the water with a
small concentration of sulphorhodamine B (Kiton Red). To excite the dye, a double-
cavity Quantel YG781C-10 pulsed Nd:YAG laser was used, doubling the frequency of
its emission to obtain 100 mJ pulses (out of a maximum energy of 500 mJ) at 532 nm
with a pulse duration of 6 ns. The laser was formed into a sheet 5 cm high and 500 µm
thick. The absorption spectrum of sulphorhodamine B has a maximum at 556 nm,
hence excitation at 532 nm is very efficient (Brackmann 1994). The fluorescence peak
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Figure 2. Schematic of the image acquisition configuration for the fluorescence measurements.

of this dye is located at 575 nm, which allows efficient discrimination between the
emitted signal and the excitation source. In these experiments, a 6 mm thick Schott
OG 550 filter was placed in front of the camera lens, to reject the strong 532 nm Mie
scattering from the liquid droplets.

To image the fluorescence emission, a Princeton Instruments slow-scan CCD camera
was used, with a 50 mm F1.2 Nikon lens. It should be noted that the short lifetime
of the fluorescence enables high-temporal-resolution imaging without the need of
gated cameras. Images were acquired for longitudinal sections slicing the water sheet
perpendicularly through the middle of the exit slit. Data sets were recorded for two
different fields of view, 26×35 mm with a resolution of 90 µm/pixel and 13×17.5 mm
with a resolution of 45 µm/pixel. To avoid imaging through the sheet edge, thickened
by surface tension, the camera was not located perpendicular to the liquid sheet, but at
an angle of 25◦ (see figure 2). This arrangement introduces a perspective deformation,
which has been neglected because it has been calculated to produce a length distortion
of less than 1%. It also causes a deformation in the coordinate perpendicular to the
sheet due to the fact that a rotated plane is effectively imaged, thus shortening the
location of the points in the air/water interface by 11%. This effect does not affect
the wavelength measurements, but it has been taken into account and corrected in
the measurements of the growth rate.

Wavelengths were measured from instantaneous PLIF images. To measure the
oscillation-amplitude growth rate, mean images were obtained averaging on-chip
1000 single shot images. To avoid saturation, the lens aperture was reduced to f#16,
as well as the laser energy. To determine the interface location the images were
thresholded and binarized.
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Figure 3. Physical problem under study. Sketch of the flow.

3. Modelling formulation
A thin liquid sheet sheared by a high-speed gas, downstream of the trailing edges

of two parallel plates, as sketched in figure 3 is considered. In the neighbourhood
of the plate edges, the basic velocity profiles start their transition from non-slip
boundary conditions on the plate surfaces to a moving gas/liquid interface. At high
gas velocities, vortex shedding will occur at the corners of the trailing edge. These
vortices will induce perturbations of the velocity and pressure fields at both gas/liquid
interfaces. The action of the gas upon the liquid sheet can be expressed as a surface
integral over the interfaces, SI , namely

F G/L =

∫
SI

(−p2n̂+ τ ′2 · n̂+ σKn̂) dS, (3.1)

where p2 is the gas pressure, τ ′2 is the gas viscous stress tensor, σ is the gas/liquid
surface tension, K is the interface main curvature and n̂ is the interface unit normal
vector pointing towards the gas.

Making the perturbed integral momentum equation non-dimensional by dividing
by the inertia forces, the following dimensionless groups emerge:

Reynolds numbers

Re1 =
U1h

ν1

, Re2 =
U2δ

ν2

, (3.2)

Momentum flux ratio

MFR =
ρ2U

2
2

ρ1U
2
1

, (3.3)

Weber number

We =
ρ1U

2
1h

σ
, (3.4)

where 2h is the sheet thickness, and δ may be taken as the air boundary layer
thickness.

Under certain conditions, the sheet oscillates with a dominant frequency. In this
case, the oscillation can be characterized by a Strouhal number, St, using a velocity
and a length scale to non-dimensionalize the frequency. As will be seen in the
following paragraphs, the sheet thickness, d = 2h, and the air velocity, U2, are suitable
parameters for this purpose because the resulting Strouhal number is approximately
constant, and with this definition:



150 A. Lozano, F. Barreras, G. Hauke and C. Dopazo

u

l

–pu
2nu

nu

nl

–p l
2nl

s′u
2  ·n

u

s′l
2 ·n

l

–rl|Kl|nl

–ru|Ku|nu

(a)

(b)

u

l

–pu
2nu

nu

nl

–p l
2nl

–rl|Kl|nl

–ru|Ku|nu

s′l
2  ·n

l

s′u
2  ·n

u

Figure 4. Force diagram over a liquid sheet element. (a) Antisymmetric waves. (b) Symmetric case.

Strouhal number

St = fd/U2. (3.5)

For the present experiments h, ν1, ν2, ρ1, ρ2 and σ are given. The sheet oscillation
frequency, f1, and δ will vary as a consequence of changing the liquid and gas
velocities, U1 and U2 respectively.

The balance of pressure, viscous and surface tension forces, integrated over the
interfaces, determines the motion of an element of the liquid sheet. For an antisym-
metric wave the area difference of the upper and lower interface elements, denoted by
superindices u and l respectively in figure 4(a), together with asymmetries in the pres-
sure and surface tension forces, will yield a resultant force with a component normal
to the sheet that will induce flapping. Viscous stresses cause a tangential resultant
force that will deform the sheet in all directions. For a symmetric wave, figure 4(b),
symmetric pressure distributions and surface tension do not induce oscillations. On
the contrary, they play a stabilizing effect inhibiting the amplitude growth. It is for
this reason that atomization of the liquid sheet always occurs as a consequence of
the growth of a sinusoidal oscillation, as observed in the experiments. The growth of
sinusoidal waves has been studied by means of linear instability analysis.

As is well known, linear perturbation analysis is based on perturbing a steady-state
solution of the flow with a small-amplitude wave in normal modes, analysing its
growth rate with the linearized Navier–Stokes equations. The wave amplitude has to
be small compared with its wavelength or with the sheet thickness. A simplified steady-
state solution is usually assumed, e.g. considering quiescent air, neglecting its shearing
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Figure 5. Sketch of the flow configuration considered for the linear instability analysis.

effects (zero viscosity), constant water velocity profile, etc. These simplifications could
imply some inconsistencies in the boundary conditions at the interfaces that are
normally ignored. The instability temporal growth is, usually, analysed in an infinite
sheet.

In the numerical part of the present study, the linear instability analysis of a
two-dimensional sheet of constant thickness, 2h, of a viscous liquid (water) sand-
wiched between two identical semi-infinite viscous air streams was considered. High-
Reynolds-number air flows were assumed, thus characterizing them by the speed U2∞
far from the liquid sheet centreline and by the local air boundary layer thickness,
δ. The basic velocity profiles for the water sheet and the air boundary layer were
approximated by quadratic functions of y, independent of the downstream coordinate
(see figure 5). The unperturbed velocity profiles were, therefore, approximated by

Û1(y) = a0 + a2y
2, −h 6 y 6 h, (3.6)

Û2(y) = b0 + b1

(
y − h
δ

)
+ b2

(
y − h
δ

)2

, h 6 y 6 h+ δ, (3.7)

Û2(y) = b0 − b1

(
y + h

δ

)
+ b2

(
y − h
δ

)2

, −(h+ δ) 6 y 6 −h, (3.8)

with h 6 y 6 h+ δ for the upper air stream and −(h+ δ) 6 y 6 −h for the lower air
stream. The unknown coefficients ai and bi are calculated by imposing the following
five constraints:

(i) the volumetric water flow rate or, equivalently, the liquid mean velocity, Ū1, is
given;

(ii) the air and liquid velocities at the unperturbed interfaces, y = ±h, are equal;
(iii) the tangential viscous stresses balance at the unperturbed interface;
(iv) air velocities at the boundary layer edges, y = ±(h+ δ) are equal to U2∞;
(v) the air velocity gradients at the boundary layer edges vanish.

Solving the five algebraic equations yields

a0 = Ū1

(
1 +

1

3

µr

∆

)
−U2∞

1

3

µr

∆
, (3.9)
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a2 =
U2∞ − Ū1

h2

µr

∆
, (3.10)

b0 = U2∞
(

1− l

∆

)
+ Ū1

l

∆
, (3.11)

b1 = (U2∞ − Ū1)
2l

∆
, (3.12)

b2 = −(U2∞ − Ū1)
l

∆
, (3.13)

where µr = µ2/µ1 is the air/water viscosity ratio, l = δ/h is the ratio of the air
boundary layer thickness to the liquid sheet half-thickness and ∆ = (2/3)µr + l.

The linearized equations governing this problem are

∂uα

∂x
+
∂vα

∂y
= 0, (3.14)

∂uα

∂t
+ Ûα

∂uα

∂x
+ v1

∂Ûα

∂y
= − 1

ρα

∂pα

∂x
+ να

(
∂2uα

∂x2
+
∂2vα

∂y2

)
, (3.15)

∂vα

∂t
+ Ûα

∂vα

∂x
= − 1

ρα

∂pα

∂y
+ να

(
∂2uα

∂x2
+
∂2vα

∂y2

)
, (3.16)

where α = 1, 2 represents liquid or gas phase, respectively.
The appropriate boundary conditions are velocity continuity and stress balance

across the interface plus the kinematic condition, derived from considering the equa-
tion of the interface S(x, y, t) = η±(x, t) − y = 0, where η+(x, t) and η−(x, t) are the
upper and lower interface displacements from the equilibrium position. For sinuous
waves η+(x, t) = η−(x, t), while for varicose waves η+(x, t) = −η−(x, t). As previously
explained, experimental observations indicate that under the most efficient atomiz-
ation conditions, the sheet oscillates in a dominant sinusoidal mode. For this reason,
in the present calculations only sinusoidal waves were considered.

The boundary conditions at the interface y = ±h + η±(x, t) were linearized about
y = ±h and only the first-order perturbations were retained. This results in the
following equations:

continuity of u

u1(±h) + η±
dÛ1(±h)

dy
= u2(±h) + η±

dÛ2(±h)
dy

, (3.17)

continuity of v

v1(±h) = v2(±h), (3.18)

continuity of tangential stress

µ1

(
∂u1

∂y
+
∂v1

∂x

)
= µ2

(
∂u2

∂y
+
∂v2

∂x

)
, (3.19)

normal stress jump

p1 − 2µ1

∂v1

∂y
= p2 − 2µ2

∂v2

∂y
− σ ∂

2η

∂x2
, (3.20)

kinematic condition

v1 =
∂η

∂t
+ Û1

∂η

∂x
. (3.21)
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Note that the gradient dÛα/dy is not continuous across the air/water interface.
For this reason, continuity of u cannot be simply approximated by u1(±h) = u2(±h).
A complete discussion about this point can be found in Yih (1990).

In order to match the solution of the problem for the air boundary layers with
the region of the free stream with constant velocity U2∞, certain boundary conditions
established at virtual interfaces, located at y = ±b where b = h+ δ must be satisfied.
These conditions are

continuity of u

u2(±b) + ηb
dÛ2(±b)

dy
= u∗2(±b), (3.22)

continuity of v

v2(±b) = v∗2(±b), (3.23)

continuity of tangential stress(
∂u2

∂y
+
∂v2

∂x

)
=

(
∂u∗2
∂y

+
∂v∗2
∂x

)
, (3.24)

continuity of normal stress

p2 − 2µ2

∂v2

∂y
= p∗2 − 2µ2

∂v∗2
∂y
, (3.25)

kinematic condition

v2 =
∂ηb

∂t
+ Û2

∂ηb

∂x
, (3.26)

where the asterisk denotes variables corresponding to the free-stream region. To these
conditions, there is yet to add vanishing perturbation velocity far from the centreline,

u∗2(±∞) = v∗2(±∞) = 0. (3.27)

This viscous two-dimensional problem can be conveniently solved in terms of
the stream function, ψ(x, y, t), formulation. Expressing the perturbed functions in a
normal mode decomposition:

[ψ(x, y, t), p(x, y, t), η(x, t)] = [Ψ (y), P (y), η0] exp (ikx+ ωt). (3.28)

Before proceeding, the variables are transformed into a non-dimensional form,
using appropriate velocity and length scales for both air and liquid flows, yielding

ỹ =
y

h
, ω̃ =

ωh

Ū1

, k̃ = kh, η̃± =
η±
h
,

Ũ1(ỹ) =
Û1(y)

Ū1

, ψ̃1(ỹ) =
ψ1(y)

Ū1 h
, Ũ2(ỹ) =

Û2(y)

U2∞
, ψ̃2(ỹ) =

ψ2(y)

U2∞ δ
.

 (3.29)

This non-dimensional analysis transforms the liquid domain to −1 6 ỹ 6 1, the
upper gas domain to 1 6 ỹ 6 1 + l and the lower gas domain to −(1 + l) 6 ỹ 6 −1,
where l = δ/h. In this way, the final Orr–Sommerfeld equations to solve are

1

Re1

Ψ̃ iv
1 (ỹ)−

[
ω + ikŨ1(ỹ) +

2

Re1

]
Ψ̃ ′′1 (ỹ)

+

[
k2

(
ω + ikŨ1(ỹ) +

k2

Re1

)
+ ikŨ ′′1 (ỹ)

]
Ψ̃1(ỹ) = 0, (3.30)
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1

Re2

Ψ̃ iv
2 (ỹ)−

[
ωV12 + ikŨ2(ỹ) +

2l

Re2

]
Ψ̃ ′′2 (ỹ)

+

[
k2

(
ωV12 + ikŨ2(ỹ)+

k2l

Re2

)
+ikŨ ′′2 (ỹ)

]
Ψ̃2(ỹ) = 0, (3.31)

where V12 = Ū1/U2∞ is the velocity ratio, subject to the following non-dimensional
boundary conditions:

ik̃Ψ̃1(±1) +
[
ω̃ + ik̃Ũ1(±1)

]
η̃± = 0, (3.32)

V12Ψ̃
′
1(±1)− lΨ̃ ′2(±1) + [V12Ũ

′
1(±1)− Ũ ′2(±1)]η̃± = 0, (3.33)

V12Ψ̃1(±1)− lΨ̃2(±1) = 0, (3.34)

Ψ̃ ′′1 (±1) + k̃2Ψ̃1(±1)−MFR
Re1

Re2

l2[Ψ̃ ′′2 (±1) + k̃2Ψ̃2(±1)]

+

[
Ũ ′′1 (±1)−MFR

Re1

Re2

lŨ ′′2 (±1)

]
η̃± = 0, (3.35)

− [ω̃ + ik̃Ũ1(±1)
]
Ψ̃ ′1(±1) + lMFR[ω̃V12 + ik̃Ũ2(±1)]Ψ̃ ′2(±1)− 3k̃2

Re1

Ψ̃ ′1(±1)

+3
l2MFR

Re2

k̃2Ψ̃ ′2(±1) + ik̃Ũ ′1(±1)Ψ̃1(±1)− ik̃lMFRŨ ′2(±1)Ψ̃2(±1)

+
1

Re1

Ψ̃ ′′′1 (±1)− l2MFR

Re2

Ψ̃ ′′′2 (±1)∓ ik̃3

We
η̃± = 0, (3.36)

Ψ̃2(±∞) = 0, (3.37)

Ψ̃ ′2(±∞) = 0. (3.38)

In these equations, Re1, Re2, We and MFR are the Reynolds numbers for the liquid
and gas flows, Weber number and momentum flux ratio as defined previously in (3.2)
to (3.4).

These equations have been solved employing the Tau–Galerkin projection method,
expanding the solution space in Chebyshev polynomials, as illustrated in Orszag
(1971) and Gottlieb & Orszag (1977). The computer code written for this purpose
was checked against other published data, in particular, stability of Poiseuille flow
(Orszag 1971), temporal stability of the stratified flow of Renardy (1987), and stability
results of Teng et al. (1997) for a liquid sheet in confined quiescent air.

4. Results and discussion
All the measurements and images collected in the present study confirm some

general characteristics of this type of flow that have been described in previous
works. In the presence of the high-speed coflowing air streams, the air/water interface
interaction results in a Kelvin–Helmholtz-type instability, but modified by the effects
of viscosity as will be shown, which quickly cause the sheet breakup. As explained
for example in Mansour & Chigier (1990), this fast atomization occurs for air/water
velocity ratios for which sinusoidal waves are dominant over dilatational ones. This
regime is defined by Mansour & Chigier (1991) as zone B, where the breakup mode
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Figure 6. Non-dimensional growth rates as a function of the non-dimensional wavenumbers:
(a) for a fixed Re1 = 170 (water velocity Ū1 = 1 m s−1) and varying Re2 (U2∞ = 15, 35, 55 m s−1);
(b) for a fixed Re2 = 535 (air velocity U2∞ = 25 m s−1) and varying Re1(Ū1 = 1, 3, 5 m s−1).

exhibits streamwise ligaments (Stapper & Samuelsen 1990). For lower air/water
velocity ratios there is a zone C characterized by the presence of dilatational waves
that prevent the dominant growth of the sinusoidal ones, which results in a poor
atomization, with reduced spray angles and droplets of larger diameters. Mansour
& Chigier (1991) define also a zone A, for low water velocities, where the sheet
breakup in longitudinal filaments occurs at the nozzle lip and no intact sheet length
is visible. Examples of the sheet appearance in each one of these zones can be found
in Mansour & Chigier (1991) or Lozano et al. (1996).

The best atomization characteristics occur in zone B, with a dominant sinusoidal
oscillation of the liquid sheet, rapid amplitude growth, large spray angle and small
droplet sizes. In this regime, linear perturbation growth only takes place for distances
of the order of one or two half-wavelengths. Recall that a linear regime indicates that
the problem can be satisfactorily described by the linearized Navier–Stokes equations,
and that the predicted growth of the propagating longitudinal waves is, under these
conditions, exponential without distortion in the wave shape. For longer distances,
the growth regime is nonlinear and wave profiles assume a zigzag shape in what
Mansour & Chigier (1990) describe as ‘half waves torn off the disturbed sheet’. It is
at this moment that atomization begins.

The numerical predictions are intended to reproduce the initial stage of the insta-
bilities, and when they depart from the linear regime the present numerical analysis
is obviously inadequate. Furthermore, according to the experimental evidence, only
sinusoidal oscillations such as those observed in zone B have been reproduced. This
is the reason why dilatational waves have not been considered.

In this work, a temporal stability analysis was performed. For a given set of
variable values, a complex temporal frequency value ω was obtained for each real
wavenumber k. Temporal growth occurs for positive real part ωr > 0. The imaginary
part of the temporal frequency ωi corresponds to the wave oscillation frequency. To
illustrate this procedure, figure 6 presents examples of the plots obtained when solving
the dispersion relation. In figure 6(a) the air velocity was varied while keeping the
water velocity constant and equal to 1 m s−1. On the other hand, in figure 6(b) the air
velocity was fixed to 25 m s−1, and the water velocity was varied. It can be observed
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Figure 7. Non-dimensional growth rate vs. non-dimensional wavenumber for fixed Re1 = 340
(Ū1 = 2 m s−1) and Re2 = 535 (U2∞ = 25 m s−1), and varying boundary layer thickness δ, expressed
as the ratio δ/h where h is the sheet half-thickness.

that all the curves have a range for which the growth rate is positive, i.e. for which
unstable waves can propagate, and all of them present a maximum for a determinate
wavenumber, corresponding to the most unstable mode.

To obtain predictions that could be compared to the experimental measurements,
the equations were solved for the same ranges of gas and liquid exit velocity as those
in the experiments. As fluid parameters (density, viscosity and surface tension) those
of air and water were selected. The liquid sheet thickness was fixed in all the cases to
the experimental one, 0.35 mm. Finally, the air boundary layer thickness was varied
in different runs because analysing its influence on the results was one of the main
objectives of the present research. No accurate measurements of this parameter were
experimentally obtained, but from particle image velocimetry (PIV) images it was
determined to be less than 0.4 mm at the nozzle exit for an air velocity of 25 m s−1.
This thickness was also estimated assuming a laminar boundary layer Blasius profile.

Although the equations were solved in non-dimensional form, to ease the com-
parison with the experiments, most of the results are presented in physical units. It
was also considered convenient to present the measurements in dimensional plots,
both to facilitate comparisons with other papers and to relate them more easily to
the actual experimental runs, where normally variables such as velocity rather than
non-dimensional groups are controlled.

4.1. Effects of air boundary layer thickness in the linear instability analysis

For a fixed water velocity of 2 m s−1 and an air exit velocity of 25 m s−1, figure 7
shows the effect of varying the air boundary layer thickness. It can be observed
that increasing the thickness causes a decrease in the growth rate, as well as in the
wavenumber for which the maximum growth is reached. This is also accompanied by
a reduction in the oscillation frequency. The dashed line corresponds to the analytical
solution of the inviscid problem, i.e. considering constant basic velocity profiles both
for water and air, as well as inviscid perturbations. Observe that, in this case, all
the viscous terms and the derivatives of the steady state velocities vanish, and the
dispersion relation reduces to a second-order algebraic equation. In this limit, the
boundary layer thickness is zero. Each curve in figure 8 has been obtained by plotting
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Figure 8. Maximum oscillation frequencies for fixed air velocity U2∞ = 25 m s−1, and varying
water velocities, for different air boundary layer thicknesses.

the frequencies of maximum growth for different water velocities while keeping the
air velocity fixed at a value of 25 m s−1. It is interesting to observe how increasing the
boundary layer thickness reduces the value of the oscillation frequencies, although
slightly increasing the water velocity value for which the oscillation frequency displays
a maximum. A thicker air boundary layer acts to damp the oscillation of the liquid
sheet, simultaneously reducing the maximum growth rate and the frequency for
which this maximum is attained, and increasing the wavelength of the propagating
perturbation.

The first and very important conclusion is that the boundary layer thickness has a
strong influence on the oscillation frequency values, and consequently, it is a parameter
that cannot be ignored if quantitative predictions are to be attempted. This implies
that quantitative results obtained from inviscid approximations have to be critically
questioned.

4.2. Oscillation frequency results

Figure 9 summarizes the frequency measurements obtained in this work. They are
plotted as a function of water velocity for the different air velocity values. This
choice of variables was selected so that the plots can be more easily compared with
previously reported measurements. The present results are in very good agreement
with those given in Mansour & Chigier (1991) and Lozano et al. (1996). The dashed
line in figure 9 roughly delimitates zones B and C (cf. figure 9 in Mansour & Chigier).
Zone A would appear at the left of zone B in the figure but has not been measured
in these experiments. For the air and water velocities considered in this study, the
oscillation frequency increases linearly for increasing air exit velocities, showing a
much weaker dependence on water velocity. It can be observed, however, that most
of the frequency curves as a function of water velocity have a maximum value in
zone B.

In figure 10, the same frequency measurements are plotted as a function of air
velocity. The functional dependence is approximately linear. The straight line in the
figure fits the frequency values for a constant water velocity Ū1 = 3.15 m s−1. Similar
lines can be obtained by fitting the frequency measurements for the rest of the water
velocities. Performing these fits, it can be seen that the resulting straight lines do not



158 A. Lozano, F. Barreras, G. Hauke and C. Dopazo

2000

500

1000

4

Water velocity (m s–1)

3210

Fr
eq

ue
nc

y 
(H

z)

5

1500

2500

6 7

C

B 25

35

45

55

65

75

Air velocity
(m s–1)
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Figure 10. Measurements of the liquid sheet oscillation frequency vs. air velocity. The straight solid
line is fitted to the frequency values corresponding to Ū1 = 3.15 m s−1. Dashed lines are numerical
results for Ū1 = 1 and 5 m s−1.

pass through the origin but intersect the abscissa at non-zero values. This fact can be
explained by associating these values with a minimum air speed, Umin, that would be
necessary to sustain a sinusoidal oscillation for a given water velocity. This limit will
never be reached in real experiments because as the air/water velocity ratio decreases,
dilatational waves are also present, and the oscillation behaviour corresponds to zone
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C described above with no dominant sinusoidal mode. From the measurements, it
was observed that Umin follows a quadratic dependence with water velocity, and the
same happens to the slope of the straight lines.

In figure 11 the measurements presented in figure 9 are displayed by plotting the
frequency values as a function of the momentum flux ratio (MFR) as defined in
§ 3. It can be observed that for all the air velocity values, the frequency maxima
on varying the water velocity correspond to a fixed MFR value of 0.5. The dashed
curve separating zones B and C in figure 9 corresponds to MFR values ranging
from 0.1 to 0.2 for increasing air velocities up to 75 m s−1. This line indicates the
transition to a dominant sinusoidal oscillation mode, and it is interesting to note that
it occurs for a much higher momentum flux (or, equivalently, dynamic pressure) in
the water than in the air. These alignments corroborate the relevance of the MFR
as an appropriate non-dimensional parameter to characterize the problem. All the
curves can be approximately collapsed if the frequency axis is non-dimensionalized in
the form

f∗ =
fd

U2∞ −Umin

, (4.1)

where d = 2h is the sheet thickness and Umin has been introduced according to the
experimental evidence, as explained in the paragraph above. A single Umin value, the
one corresponding to the line joining the maximum oscillation frequencies, has been
selected. The final result is depicted in figure 12, and although the collapse is not
complete (recall that Umin depends on water velocity), the result is quite satisfactory.

A question has recently been raised about the possible mechanism that could
trigger the initial longitudinal perturbation that is later amplified, causing the sheet
breakup. A first explanation could relate it to the air vortex shedding from the
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nozzle lip, recalling the strong dependence of the oscillation frequency on the air
velocity. A comparison with analogous situations in similar flows could be made.
The unforced vortex shedding past a solid cylinder i.e. the typical Kármán vortex
street, occurs with a Strouhal number of 0.21 defined with the free-stream velocity
and a characteristic body length, in this case, the cylinder diameter. Translating the
analogy to the present case, a pertinent length scale should be the sheet thickness
plus the thickness of the nozzle lips. Substituting the frequency measurements, air
velocities and length scale values for these experiments, a Strouhal number of 0.025 is
obtained, demonstrating that this problem responds to different underlying physical
mechanisms. Another situation that could be similar to this problem would be the
vortex shedding from a backward-facing step. Experiments reported in the literature
indicate a Strouhal number of 0.1 for this flow (Eaton & Johnston 1980). In this
analogy, it seems that the appropriate length scale should be the nozzle lip, which
for the present experiments yields a Strouhal number of 0.01. However, it is obvious
that the possibility of sheet displacement makes this case significantly different from
shedding over a fixed solid wall. The onset of the sheet oscillation with the water
surface that is moving sinusoidally modifies the pressure and velocity fields in the
neighbourhood of the air vortices to be detached. The air, in turn, must displace the
water sheet with its large inertia. These changes could explain why a lower oscillation
frequency is observed.

The fact that the liquid mass is influential in the sheet flapping is confirmed
by numerous measurements indicating that the oscillation frequency decreases with
increasing sheet thickness. If the sheet thickness is substituted in the expression for
the Strouhal number, similar values are obtained from different experiments: 0.01 in
the present case, 0.0067 from Mansour & Chigier (1991) and 0.007 from Lozano et
al. (1996). This agreement reinforces the assumption that the sheet thickness is the
appropriate length scale characterizing the oscillation. The initial displacement of the
liquid sheet, together with the location of the triple contact line among the air, liquid
and solid nozzle surface, which could be moving at the lip edge, seem to act jointly



Longitudinal instabilities in an air-blasted liquid sheet 161

1000

10

Water velocity (m s–1)

50

Fr
eq

ue
nc

y 
(H

z) 3000

Air velocity (m s–1)

15

15 (theor.)

2000

4000

20 25

20 (theor.)

25 (theor.)

35 (theor.)

45 (theor.)

25 (exp.)

35 (exp.)

45 (exp.)

55 (exp.)

25 (inviscid)

Figure 13. Numerical predictions of the oscillation frequency as a function of water exit velocity,
for different air velocities. Some experimental curves from figure 9 are included for comparison. A
curve obtained from the inviscid linear instability analysis is also included.

to minimize the effect of the nozzle lip thickness on the shedding of the vortices that
could trigger the sheet oscillation. The small discrepancy among the resulting Strouhal
numbers (0.01, 0.007, 0.0067) might be due to the fact that the present experiments are
the only ones where air and water exit velocities were parallel, whereas in Mansour
& Chigier and Lozano et al. air was impinging onto the water sheet at an angle. This
result points to the interesting fact that to atomize it might be more efficient to inject
parallel air and liquid streams rather than flowing the air at an angle with respect to
the sheet. Unfortunately, with the present nozzle assembly the air exit angle cannot
be varied.

The frequency values predicted from the linear instability analysis for a given set
of air and water velocities, to be compared with the experimental measurements,
correspond to those for which the growth rate is a maximum. It is assumed that being
the ones with a faster growth, they should be dominant, and consequently, the ones
experimentally observed.

Frequency values were calculated for different air and water exit velocities. The air

boundary layer width was varied with the air velocity according to a U
−1/2
2∞ law. All

the resulting frequencies are plotted in figure 13 and are to be compared with the
experimental measurements in figure 9. It is observed that for each air velocity, the
frequency has a maximum for a given water velocity, in qualitative agreement with
the experimental behaviour. This trend is also reproduced if the linear analysis is
performed for inviscid fluids. However, the values predicted when viscous effects are
included are closer to the measured ones than those obtained in the inviscid limit.
However, although results improve when viscosity is included, and the functional
dependence of the frequency on air and water velocities is properly captured, the
quantitative agreement is not satisfactory.

It is interesting to observe that while the experimental frequency curves in zone B
are accurately approximated by quadratic functions, the linear instability results are
better fitted to third-order polynomials.

The numerical frequency predictions can also be plotted as a function of the air
velocity (figure 14). The most remarkable characteristic of this plot is that the linear
dependence of the oscillation frequency on air velocity observed in the measurements
is computationally reproduced. This is especially interesting because if viscosity is
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Figure 14. Numerical predictions of the liquid sheet oscillation frequency vs. air velocity. Two
curves obtained from the inviscid linear instability analysis are also included for comparison.

ignored, the predicted dependence becomes quadratic as depicted by the dashed line
in the figure. A pure inviscid Kelvin–Helmholtz instability mechanism only driven
by pressure variations is unable to explain the experimentally observed oscillations.
These results reveal for the first time that the air viscosity has a significant role in
fixing the sheet oscillation frequency even in the linear regime, and questions once
again the validity of some inviscid analysis.

A comparison with the experimental data is also displayed in figure 10. It is evident
that although there will be agreement for a particular water velocity (around 2 m s−1),
as this velocity is increased or decreased predicted values depart from the measured
ones.

4.3. Droplet size distributions

Droplet size distributions were obtained by laser diffractometry. From them, the
Sauter mean diameter, SMD, defined in (2.1) was calculated. Results are presented in
figure 15(a). As in figure 9, the dashed line defines the transition between oscillation
regimes B and C. It is evident that the mean diameter decreases with increasing air
velocity. For a fixed air velocity, and varying water velocities, the mean diameter
appears to present a minimum roughly coincident with the frequency maximum
(compare Figures 9 and 15a). This minimum is more pronounced for low air speeds.
When crossing from zone B to C, i.e. decreasing the momentum flux ratio MFR
below 0.2–0.1, the mean diameter increases, due to the different sheet oscillation
characteristics. On the other hand, an increase in MFR does not necessarily cause a
decrease in droplet diameter from primary atomization. It has to be noted, however,
that when measuring at larger downstream distances (20 or 30 cm) for a fixed air
velocity the diameter always tends to decrease for increasing MFR, due to secondary
breakup.

The SMD dependence on air velocity is more clearly seen in figure 15(b). The
measured points in the figure have been adjusted to a 1/U2∞ function. Note that
the mean diameter dependence on air and water velocities is similar to that of the
streamwise filament spacing. This can be observed by comparing figures 15(a) and
15(b) with figures 10 and 11 in Lozano et al. (1996). The similar behaviour displayed
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by both parameters indicates that a relation exists between droplet diameter and
filament spacing.

The inverse correlation between SMD and oscillation frequency suggests it might
be convenient to attempt to collapse all the curves in figure 15(a) in a similar way
to that followed to obtain figure 12. MFR has been selected as the parameter on the
abscissa, again capturing the dependence on air and water velocity. To collapse the
vertical axis, a non-dimensional parameter was defined, including physical properties
that are known to be influential in the droplet diameter resulting from the atomization
processes. The selected parameter is:

SMDfµ2

σ
, (4.2)

where f is the sheet oscillation frequency, µ2 is air viscosity and σ is the surface
tension coefficient. The final result, which can be considered to be satisfactory, is
depicted in figure 16.
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(a) (b)

(c) (d )

Figure 17. Luminous trace indicating the intersection between the oscillating water sheet and the
illumination laser plane. Field of view is 26 × 35 mm. The nozzle was located at the top of the
image. Note that the sheet is viewed with a 25◦ angle. Water exit velocity: 1.2 m s−1. Air velocities:
(a) 15 m s−1, (b) 25 m s−1, (c) 30 m s−1, (d) 40 m s−1.

4.4. Wavelength results

Examples of the instantaneous images acquired to study the oscillation wavelength are
depicted in figures 17 and 18. The field of view in these images is 26×35 mm extending
downstream from the nozzle lip, with a resolution of 90µm/pixel. Some ambiguity
exists in defining a perturbation wavelength because as the wave propagates with
the accelerating water sheet, its velocity increases while it moves downstream. As the
frequency has been experimentally determined to remain constant with downstream
distance (cf. Mansour & Chigier), the wavelength must grow according to the relation
fλ = c, where f is the oscillation frequency, λ is the wavelength and c is the phase
velocity. This type of phenomenon is perfectly illustrated in figure 1(c) of De Kee
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(a) (b)

Figure 18. Similar images as in figure 18 for air velocity of 25 m s−1 and water velocities of
(a) 2.4 m s−1 and (b) 3.0 m s−1.

& Wissburn (1998) for a non-Newtonian fluid. Despite this, the images obtained are
revealing, because comparisons can be made among the waves resulting for different
air and water velocities, and for a variety of MFR values.

Figure 17 shows instantaneous images for a fixed water velocity of 1.2 m s−1 and
increasing air speeds. From left to right and top to bottom, the air velocities are 15,
25, 30 and 40 m s−1 (MFR of 0.18, 0.5, 0.73 and 1.29). The breakup length clearly
decreases for increasing air exit velocity. If the air velocity is maintained at a fixed
value, it can be observed that the breakup distance increases with water velocity.
Figure 18 displays an example for air velocity of 25 m s−1 and water velocities of
2.4 m s−1 (a) and 3.0 m s−1 (b).

Extending these conclusions to the wavelength behaviour proves somewhat harder.
This is aggravated by the fact that the sinusoidal waves become highly distorted prior
to breakup, which takes place after only one or two wavelengths. With this in mind,
and accepting errors as large as 25% in the wavelength measurements, the general
behaviour is summarized in figure 19, where the wavelength in mm is plotted vs. water
velocity, for different air velocities. A sudden increase in wavelength for increasing
water velocity is apparent when the oscillation regime transitions from zone B to C
(limit represented as a dashed line in the figure).

With the present numerical code, wavelengths for which the wave growth rate is
maximum can be directly obtained by inverting the critical wavenumbers. Results are
also included in figure 19, represented with hollow symbols. The predictions slightly
underestimate the experimental measurements for low air velocities. However, as the
air velocity increases, numerical and measured results are quite close. The code is, in
any event, unable to capture the B to C regime transition. Should the wavelengths
be calculated using the inviscid instability analysis the values would be significantly
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Figure 19. Measured (solid symbols) and calculated (hollow symbols) wavelength in mm as a
function of water velocity, for different air velocities. The dotted line at the right indicates the
transition between zones B and C for the measured values.

(a) (b)

Figure 20. Longitudinal sections of the sheet for the same MFR value (0.09) and different
velocities: (a) Ū1 = 1.75 m s−1, U2∞ = 15 m s−1; (b) Ū1 = 4.5 m s−1, U2∞ = 40 m s−1.

lower than the results obtained when viscosity is included, and thus the agreement
with the measurements would be poorer.

Figure 20 presents two images with very similar MFR (0.09) but different velocities
(U1 = 1.75 and 4.5 m s−1, U2∞ = 15 and 40 m s−1). For this particular MFR value,
the liquid sheet in both images seems to be oscillating with a similar longitudinal
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Figure 21. Predicted non-dimensional wave propagation velocity as a function of (a) water velocity
for different air speeds (the solid line is a fit to the calculated velocities), and (b) air velocity for
different water speeds.

wave. However, while in (a) no transverse structure can be discerned, (b) shows a
series of striations, indicating the presence of transverse waves. Transverse waves
appear to be the most probable cause of the formation of longitudinal filaments
(Lozano, Garcı́a-Olivares & Dopazo 1998). From this image, it might be inferred that
their frequency should mainly depend on the water velocity. On the contrary, from
the present experiment observations, varying the air and water conditions it can be
concluded that it is the air velocity that ultimately determines the frequency of the
transverse wave of maximum growth, much in the same way as with the longitudinal
waves. Filament spacing is principally fixed by the air velocity.

4.5. Wave propagation speed

To experimentally determine the wave propagation velocity at the nozzle exit is some-
what difficult because it varies with the downstream distance. Furthermore, application
of a time-of-flight measurement between two fixed points is not straightforward due
to the small wavelength values (less that 1 cm). If, as an approximation, it is assumed
that the interface velocity is the mean between the air and water speeds, following
the indications of many papers available in the literature, the results obtained, for
example, when calculating wavelengths from the frequency measurements are much
larger than the measured ones. A better agreement between the range of measured
and predicted values is obtained if c is assumed to be the water velocity, which for
simplicity can be approximated to its exit velocity.

Wave propagation speeds have also been calculated numerically. For any set of
flow conditions, the present linear analysis provides for each wavenumber k the
corresponding complex temporal frequency ω, formed by the imaginary part ωi, that
gives the oscillation frequency, and real part ωr that corresponds to the growth rate.
With this information, it is immediately possible to calculate the wave propagation
speed c according to the relation c = ωi/k. This type of result is usually absent in
most papers on related subjects, especially those considering water exiting into a
quiescent atmosphere, because for ease of calculation, it is customary to assume that
the propagation speed is identical to that of the water. Here, it is possible to test this
common assumption.

Figure 21(a) shows the calculated variation of the propagation speed divided by
the water exit velocity ci = c/Ū1 as a function of the water velocity for different air
speeds. Figure 21(b) displays the variation of the same non-dimensional propagation
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Figure 22. Average image of 1000 single-shot images of the longitudinal section of the sheet,
for air and water velocities of 15 m s−1 and 0.6 m s−1 respectively.

speed as a function of air velocity for several water velocity values. In the present
calculations, the resulting values range from 1 to 1.6, thus the actual propagation
speed exceeds the water velocity. It is observed that for high air/water velocity ratios,
the air quickly accelerates the sheet, and the resulting dimensionless propagation
speed ci is higher than 1. However, as the water velocity increases, the air accelerating
effect is weakened, and the value of ci approaches 1.

4.6. Oscillation-amplitude growth rate

As explained in § 2, oscillation-amplitude growth rates have been obtained from
averaged flow images, fitting the interface location to an exponential curve of the
form η = η0 exp (krx), where kr is the growth factor of a sinusoidal wave described
by η = η0 exp ((kr + iki)x + wt). To determine the interface location the images have
been thresholded and binarized. An example of these images, already processed, is
displayed in figure 22, where air and water velocities are 15 and 0.6 m s−1, respectively.
Figure 23 is an example of how the exponential function is adjusted to the interface
profile. As the vertical axis is shown in logarithmic coordinates, the fitted function
becomes a straight line. The line adjusts accurately to the initial section of the
interface. The last points are slightly displaced, indicating that for these downstream
distances, the wave is no longer in the linear regime.

This procedure confirms that, effectively, in the initial instability development
process, there is a region of exponential growth. Although this fact has always been
assumed, experimental confirmations had not been published before. In fact, these
results substantiate the possibility of trying to describe the instability growth using a
linear analysis.

From the instability analysis, the calculated growth rate is the real part ωr of the
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Figure 23. Location of the right hand air/water interface of the average image in figure 24,
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complex temporal frequency ω. To enable a comparison with the measured spatial
growth coefficient, the values have to be transformed to the form kr = ωr/c where c
is the wave propagation speed.

Some results are summarized in figures 24(a) and 24(b). For a constant air vel-
ocity (figure 24a), the numerically calculated growth rate decreases with water velocity.
Experimentally, the observed trend is similar, but for low water velocities the measure-
ments are less accurate. For high air/water velocity ratios, the air coflow constrains
the growth of the sinusoidal waves and the region of linear behaviour is very small.
The result is that the spray angle decreases despite the fact that near the nozzle the
wave growth rate might be larger. Consequently, most of the spray angle vs. water
velocity plots display curves with a maximum (see for example Mansour & Chigier
1991, or Lozano et al. 1996). In these examples, the spray angle decreases both as the
oscillation mode enters either zone C, with the presence of dilatational waves, or zone
A, where the air stream dominates over the sheet displacement and spray expansion,
reducing the transverse distance over which the droplets can separate from the liquid
sheet. For practical purposes, the spray cloud width reaches a maximum for a certain
water velocity in zone B. It is curious to observe that the largest spray angle does not
necessarily coincide with the maximum amplitude growth rate.
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Figure 24(b) shows the dependence of the amplitude growth on water velocity for
a fixed momentum flux ratio MFR. In this situation, the growth rate increases for
increasing water velocity (which implies an increase in air velocity as well).

4.7. Limitations of the linear instability analysis

For all the variables considered (oscillation frequency, wavelength and oscillation
growth rate) results from viscous linear instability analysis seem to correctly describe
their qualitative behaviour. It has also been demonstrated for the first time that
inclusion of viscous basic velocity profiles greatly improves the predictions when
compared with those obtained with the widely used inviscid analysis. For the present
measurements, however, the quantitative agreement is not satisfactory. Some con-
siderations are appropriate.

The present linear instability analysis is not capable of properly reproducing the
oscillation frequency experimental dependence on sheet thickness. While experimental
evidence from several sources indicates that the oscillation frequency scales with the
inverse of the sheet thickness, linear instability results are mostly insensitive to these
variations. As a consequence, it can be expected that measurements obtained for a
thinner sheet will be more closely reproduced via a linear instability analysis. Under
some conditions they might even coincide but the agreement should be considered
circumstantial.

Further analysis has been performed, considering also different thickness values for
the viscous boundary layer in the water stream. A parabolic profile has been assumed
for the water boundary layer, with a flat profile for the inner sheet region. When a
boundary layer thickness of h/10 is considered, the oscillation frequencies decrease
approximately by 20%. Although the reduction is significant, it still does not match
the experimental values. Furthermore, the dependence on sheet thickness when this
profile is used is also incorrect.

Apparently the effect of water inertia is not correctly captured. This would also
explain the discrepancy between numerical and experimental results in the water
velocity values for which the maximum frequencies are attained observed in figure 13.
The effect of the air stream seems to be properly described. Given that the general
problem seems correctly stated in its mathematical formulation, the discrepancies
should be attributed to the linearization of the equations.

5. Conclusions
A combined numerical and experimental study has been performed on an air-

blasted water sheet. Measurements of the oscillation frequency of the longitudinal
perturbation, wavelength, and amplitude growth have been obtained. From a linear
instability analysis, values for all these parameters have been calculated, for the
same flow geometry and conditions as those in the experiments. In this way, a
direct comparison between measurements and predictions has been possible. As a
novel contribution, viscosity in both air and water flows has been considered in
the numerical analysis. The local air boundary layer has been characterized by its
thickness δ. This inclusion has been demonstrated to be essential even if a correct
qualitative prediction of the parameters mentioned is intended. The increment of the
air boundary layer thickness acts to damp the oscillations of the liquid sheet and
causes a reduction in the oscillation frequency, the growth rate, as well as in the
wavenumber for which the growth is maximum.

It has been observed in the frequency measurements, that for different air velocities,
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a local maximum is obtained for a constant MFR of 0.5 when varying the water
velocity. Air and water velocities should be selected accordingly to match this value
in order to achieve the fastest atomization. For a fixed water exit velocity, the
oscillation frequency increases linearly with air speed, in good agreement with previous
studies. This behaviour has been reproduced in the numerical analysis; this is quite
remarkable, because, if viscosity is neglected, the predicted dependence is quadratic. It
can be concluded that the oscillation cannot be exclusively explained on the grounds
of an inviscid Kelvin–Helmholtz instability driven by pressure fluctuations. Again,
neglecting viscosity can lead to incorrect predictions.

The results indicate that air velocity mostly determines the oscillation frequency,
through air/water interaction near the nozzle exit. Once the oscillation is forced,
the amplitude quickly grows when the sheet starts to flap due to the coupling of
Kelvin–Helmholtz-type instabilities, affected by viscous effects, on both interfaces.
This explains why sinusoidal waves are dominant over dilatational ones for a wide
range of MFR values.

For different air and water exit velocities the droplet Sauter mean diameter (SMD)
has been calculated. SMD tends to decrease for increasing air velocities. For a
fixed air velocity and varying the water speed the SMD curves present a minimum
that roughly coincides with the sheet oscillation frequency maximum. This inverse
correlation has lead to a non-dimensional plot of (SMDfµ2)/σ as a function of
MFR. This empirical relation could be used to predict droplet diameters, but it
has to be noted that the measurements have been taken at a distance from the
nozzle appropriate to describe the results of primary breakup. After drop formation,
secondary breakup and coalescence phenomena can occur, altering the droplet size
distribution.

Measurements of the wavelength together with the measured frequencies indicate
that the longitudinal waves propagate approximately with the local water velocity,
and not with the average of the air and water free-stream velocities as suggested in
some papers. As a result, the wavelength increases with downstream distance. The
numerical study concludes that the propagation speed is higher than the water exit
velocity for those situations where the air accelerating effect on the sheet is noticeable.
This happens for high air/water velocity ratios.

The amplitude growth rate has been measured and calculated, and shows a decreas-
ing trend with increasing water velocity, while keeping the air velocity constant. This
result contrasts with previously published measurements of spray angle that present
curves with a maximum for these velocity values. The discrepancy occurs for the
region of high air/water velocity ratios, where the growth is larger, but the reported
angles are smaller. This can be explained because, under these circumstances, the
region of exponential growth is very small, and the waves are quickly deformed and
constrained in their amplitude by the air streams.

As a global conclusion, linear instability predictions of sheet oscillation frequencies,
wavelengths and oscillation growth rates improve when viscosity is included in the
analysis. Inviscid results are consistently worse in all cases. However, even when
viscosity is considered, quantitative agreement is not satisfactory, indicating that the
real phenomenon is more complex and probably beyond the capabilities of this
type of analysis. Qualitative trends are, in general, correct, but caution has to be
exercised when using this method to predict, for example, droplet size distributions.
However, it has to be kept in mind that the actual atomization is an inherently three-
dimensional process, with active participation of transverse waves and longitudinal
filaments. Droplet size predictions solely based on longitudinal perturbations cannot
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be strongly based on physical grounds, unless a mechanism is discovered relating
these perturbations to the three-dimensional observed effects.
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